TRAFFIC IMPACT ASSESSMENT

FOR A RESIDENTIAL DEVELOPMENT ON ERF 325, THEESCOMBE, PORT ELIZABETH

November 2024

Prepared for: C.G.S Property Trust

Prepared by: Engineering Advice and Services (Pty) Ltd (041) 5812421

DOCUMENT CONTROL SHEET

i

CLIENT REF: C.G.S PROPERTY TRUST

PROJECT NAME: PROPOSED RESIDENTIAL DEVELOPMENT ON ERF 325, THEESCOMBE, PORT ELIZABETH

DOCUMENT TITLE: TRAFFIC IMPACT ASSESSMENT

DOCUMENT FILE REF: F:\2200-2299\2219\Reports\REP001 - TIA Erf 325, Theescombe.docx

Version	1		
Compiled by	M Mallick Candidate Eng Technologist (2023404570)	November 2024	
Reviewed by	CGA Hastie Pr Tech. Eng (200070122)	November 2024	
Amendments made by			

DISTRIBUTION:	1) Original	:	Client – C.G.S Property Trust – Mr A Scribante
	2) Copy	:	Route 2 EC - Ms M Weyers
	3) Copy	:	Mr Z Kele – Transportation Planning NMBM
	4) Copy	:	EAS File 2219
PREPARED BY :	Engineering P O Box 133 HUMEWO0 6013	Advic 867 OD	e and Services (Pty) Ltd
Telephone : Email :	041 581 242 caryh@easp	21 e.co.za	1

This Report has been prepared by Engineering Advice and Services, with all reasonable skill, care and diligence within the terms of the contract with the client, incorporating our standard terms and conditions of business and taking into account the resources devoted to it by agreement with the client. EAS disclaims any responsibility to the client and others in respect of any matters outside of the scope of the above.

This report is exclusive to the client and the described project. EAS accepts no responsibility of whatsoever nature to third parties to whom this Report, or any part thereof, is made known. Any such persons or parties rely on the report at their own risk.

CONTENTS

ii

	Page
Document Control Sheet	i
Contents List of Tables	11 iii
List of Figures	iii
List of Annexures	iii
Abbreviations	iii
1 Introduction	1
1.1 Background	1
1.2 Objectives of the Study 1.3 Methodology	1
1.4 Study Area	3
1.5 Assumptions and Limitations	3
2 Land Use Rights, Development and Environs	4
2.1 Current and Proposed Land –Use Rights	4
2.2 Development Environs	4
2.3 Overview of Development	4
3 Data Collection	5
3.1 Peak Hour Traffic Volumes	5
3.3 Road Network	9
3.4 Spatial Development Framework	11
3.5 Public Transport	11
3.6 Non-Motorised Transport	11
4 Capacity Analysis – Before Development	12
5 Trip Generation	13
5.1 Low Density Residential – Single Dwelling Units (Category 210)	13
5.2 Townhouses (Category 231) 5.3 Multi Level Townhouses (Category 232)	13
5.4 Retirement Village (Category 251)	13
5.5 Summary of Trips	14
6 Trip Distribution	14
7.1 Location	18
7.2 Access Configuration	19
8 Capacity Analysis – After Development	21
8.1 2024 After Development8.2 2029 After Development	21 21
9 Public Transport Operations and Pedestrian Arrangements	23
10 Parking and Service Vehicle Requirements	23
10.1 Parking Requirements10.2 Service Vehicle Requirements	23 23
11 Conclusions	23
12 Recommendations	24
13 References	24

iii

LIST OF TABLES

Table 1: Development Components	4
Table 2: Level of Service definitions for Vehicles (Highway Capacity Manual ⁽⁶⁾ method)	12
Table 3: Results of Junction Capacity Analysis – 2024 Before Development	12
Table 4: Peak Hour Trip Generation Rates	13
Table 5: Peak Hour Trip Generation Summary	14
Table 6: Access Control Service Flow Rates	19
Table 7: Access Control Queue Lengths	19
Table 8: Access Control Queue Lengths for erf 325, Theescombe – Blumberg Road	20
Table 9: Access Control Queue Lengths for erf 325, Theescombe – Chopin Road	20
Table 10: Results of Junction Capacity Analysis – 2024 After Development	21
Table 11: Results of Junction Capacity Analysis – 2029 After Development	21

LIST OF FIGURES

Figure 1: Locality Plan	2
Figure 2: Existing Peak Hour Traffic Volumes - 2024	6
Figure 3: Escalated Background Peak Hour Traffic Volumes - 2029	8
Figure 4: Existing Road and Junction configuration	10
Figure 5: Greater Walmer Spatial Development Framework	11
Figure 6: Generated Peak Hour Traffic Volumes	15
Figure 7: Peak Hour Traffic Volumes After Development - 2024	16
Figure 8: Peak Hour Traffic Volumes After Development – 2029	17
Figure 9: Proposed Site Layout and Access Configuration	22

LIST OF ANNEXURES

ANNEXURE A Land Use Rights

ANNEXURE B Peak Hour Traffic Counts

ANNEXURE C SIDRA OUTPUT SHEETS 2024 Before Development

ANNEXURE D SIDRA OUTPUT SHEETS 2024 After Development

ANNEXURE E SIDRA OUTPUT SHEETS 2029 After Development

ABBREVIATIONS

ADT	Average Daily Traffic
ADTT	Average Daily Truck Traffic
EAS	Engineering Advice & Services (Pty) Ltd
ECDoT	Eastern Cape Department of Transport
KM	Kouga Municipality
Km/h	kilometres per hour
LOS	Level of Service
LSDF	Local Spatial Development Framework
TIA	Traffic Impact Assessment
TMH	Technical Methods for Highways
TRH	Technical Recommendations for Highways

1 INTRODUCTION

1.1 BACKGROUND

Engineering Advice & Services (Pty) Ltd was appointed by C.G.S Property Trust during November 2023 to prepare a Traffic Impact Assessment for a proposed residential development on erf 325, Theescombe in Pari Park, Port Elizabeth, situated in the Nelson Mandela Bay Municipality. The location of the site is indicated on **Figure 1** overleaf.

1.2 OBJECTIVES OF THE STUDY

In broad terms, the purpose of the traffic assessment is

to determine the extent and nature of the traffic generated by the proposed development, assess the impact of this traffic on the operation of the associated road network, and devise solutions for any problems identified. The following key elements, *inter alia*, are addressed in this traffic impact assessment:

- The suitability and safety of proposals for access to and egress from the site;
- The capacity of the existing and future road network within the influence radius; and
- The road upgrading measures required to accommodate traffic generated by the proposed development.

In general, this report serves to satisfy the Nelson Mandela Bay Municipality and other relevant authorities that the traffic impact of the envisaged development is within acceptable limits and that the suggested improvements conform to the standards and parameters set by the relevant authority.

1.3 Methodology

The approach followed in conducting the traffic impact assessment was in accordance with the guidelines set by **TMH 16 Volume 1- South African Traffic Impact and Site Assessment Manual**⁽¹⁾.

Given the extent of the proposed development and in terms of the aforementioned guidelines, the development is considered to be a medium-sized development. As such, this assessment considered impact for both the development (assumed to be 2024) and development plus five-year (2029) horizons.

The methodology used was as follows:

- Present traffic flow patterns were obtained and the affected junctions analysed, where after recommendations were made on the present need for road network improvements, without taking the proposed development into account;
- Given the development extent, trips generated by the development were determined using applicable trip generation rates specified in TMH 17 Volume 1 South African Trip Data Manual ⁽²⁾;
- The distribution of the generated trips was estimated where after the generated traffic was assigned to the surrounding road network;
- The proposed access points were assessed from operational and traffic safety perspectives in terms of TRH26: South African Road Classification and Access Management Manual⁽³⁾;
- Operation of affected junctions and the existing access points was analysed to ensure that they operate safely at acceptable levels of service and recommendations made on the need for rationalisation taking cognisance of the proposed development for the 2024 and 2029 planning horizons;
- On-site circulation, parking and delivery aspects were assessed; and
- Taking into account the major findings of the study, conclusions were made regarding the financial responsibilities of the affected parties for required road upgrading measures.

REP001 – Proposed Residential Development – Erf 325, Theescombe

1

1.4 STUDY AREA

Based on the type and extent of the development the study area extended to the adjacent junctions of Merle Road and Michelangelo Avenue with Blumberg Road, Brahms Road with Chopin Road and Chopin Road and Michelangelo Avenue with Glendore Road as all trips generated by the proposed development will approach along these roads and through these junctions.

3

1.5 Assumptions and Limitations

The scope of this TIA is limited to the project as described in this report. The scope only deals with vehicular and pedestrian traffic related impacts in the Pari Park area and excludes consideration of the following:

• Any vehicular activity outside of a radius of 500m of the Pari Park precinct;

The report is based on a number of assumptions and is subject to certain limitations. These are as follows:

- That vehicle trips are based on development information supplied by the site owner / developer;
- That trips generated by the proposed development are distributed to and from the site based on the location of the development site, relative to trip attractors (e.g., employment areas, schools, shops) and the major road network; and
- That the site will be used for the purposes as planned by the developer.

Notwithstanding these assumptions and limitations, it is our view that this Traffic Impact Assessment provides the necessary framework to allow the developer to conduct activities within the necessary legal, planning and operational requirements set by the relevant road authority.

2 LAND USE RIGHTS, DEVELOPMENT AND ENVIRONS

2.1 CURRENT AND PROPOSED LAND –USE RIGHTS

Erf 325, Theescombe measures approximately 17.436ha in extent, is zoned for Single Residential Zone 2 purposes and is currently vacant. An application to rezone the property to General Residential Zone 1, will be submitted to the NMBM in due course. This TIA will address the impact of the proposed development on the surrounding road network.

4

The Informal Town Planning Enquiry form for erf 325 is attached as Annexure A.

2.2 **DEVELOPMENT ENVIRONS**

As can be seen from **Figure 1**, the development is situated on undeveloped land to the south of the Providentia residential suburb and to the west of the Pari Park residential suburbs respectively on the southern edge of Port Elizabeth. The land use abutting the site across to the north across Blumberg Road and to the east is residential in nature. To the immediate south and west of the site, the land use is low density rural residential in nature.

The Mount Pleasant Primary School is situated approximately 300m to the northwest of the site. The school sports fields are located alongside Merle Road. There is no primary access to the fields from Merle Road although emergency vehicle and pedestrian gates are located along the school fence.

2.3 OVERVIEW OF DEVELOPMENT

The proposed development comprises of 331 residential units of various types as indicated in **Table 1** and on **Figure 9**.

Component	No of Units	Description
Single Residential Units (210)	32	Double storey residential units
Townhouses (231)	174	Simplex / duplex townhouses
Multi-level townhouses (232)	56	Two-storey walk-up units
Retirement Village (251)	69	Single-storey retirement units
Total	331	

Table 1: Development Components

Access to the development is proposed from Blumberg Road opposite Merle Road from the north and via Chopin Road through Pari Park from the east.

3 DATA COLLECTION

3.1 PEAK HOUR TRAFFIC VOLUMES

Peak hour traffic turning movement counts were conducted during typical weekday morning and evening peak periods on Wednesday, 24 January 2024, at the following intersections:

5

- Glendore Road / Michaelangelo Avenue
- Glendore Road / Chopin Road
- Merle Road / Blumberg Road
- Brahms Road / Chopin Road

The detailed survey data is attached as Annexure B and summarised on Figure 2 overleaf.

3.2 DAILY TRAFFIC VOLUMES

As this study will also analyse the impact of the development in 2029, under normal circumstances historical daily traffic volumes at count stations in the vicinity of the development would be sourced from the NMBM Transportation Planning Sub-Directorate in order to determine average traffic growth per annum.

7

Unfortunately, the most recent counts conducted at the nearest stations - A29 on Circular Drive at William Moffett Expressway and A35 on William Moffett Expressway south of Cape Road - were during 2009.

When considering both surveyed stations, traffic growth at these stations between 2001 and 2009 reflected average growth of 3.11% per annum.

It is considered that this growth is relatively high. However, it is noted that the Pari Park and surrounding area is close to its maximum development potential thus providing little scope for growth in traffic volumes over the next five years.

The background traffic volumes will thus be escalated by 2% per annum to reflect 2029 volumes and are indicated on **Figure 3** overleaf.

3.3 ROAD NETWORK

3.3.1 Existing

The existing road network and intersection configuration were roughly measured up using aerial photography. The primary road network can briefly be described as follows:

9

- Glendore Road (DR01905) is a north-south class U4b residential collector/distributor road residential serving areas between the Buffelsfontein Road and Victoria Drive arterials. The road also serves as a link between the residential areas of Mount Pleasant, Charlo and Miramar, and the southern coastline in the Port Elizabeth area. The road consists of a single 3.7m wide lane per direction. In the vicinity of the Michaelangelo Road intersection, traffic calming measures comprising of a narrow median and low speed humps have been installed in order to slow traffic passing through the Pari Park residential area. The road is in a good condition with a posted speed limit of 60km/h, although the operational speed ranges from 40 to 60 km/h.
- Michelangelo, Brahms and Chopin Roads are class U5b residential streets providing portions of Pari Park access to Glendore Road. The roads have mountable kerbs and consist of a single 3.4m wide lane per direction. At present, Brahms and Chopin Roads simply terminate at the eastern boundary of erf 325, indicating the initial intention to extend into erf 325, while Michelangelo Road ends in a turning circle. The roads are in a fair condition.
- Blumberg Road is a kerbed 6.8m wide surfaced Class U5b residential access street in a good condition. The road provides a link between Mount Pleasant and Providentia and Glendore Road via a short section of Michelangelo Road.
- Merle Road is a kerbed 6.8m wide surfaced Class U5b residential access street in a good condition linking Providentia and Mount Pleasant with Blumberg Road. The road has a steep gradient between Blumberg Road and Harry Road. At the intersection with Blumberg Road, the Blumberg Road west approach is stop controlled while the Merle Road and Blumberg Road west approaches are free-flow given the predominant flow between Providentia and Pari Park.

View of Glendore Road approaching Michaelangelo Avenue from the north

The existing road and intersection configuration is indicated on Figure 4.

3.3.2 Future

The long-term road network proposals as contained in the Draft **NMBM Comprehensive Integrated Transport Plan** ⁽⁴⁾ indicate that Glendore Road will ultimately form part of a north-south link between Lorraine and the Driftsands Area southeast of Victoria Drive and ultimately Summerstrand. The upgrading of this link may result in increased traffic volumes through Pari Park in the longer term as motorists in the Lorraine and Charlo areas make use of this alternative route to Summerstrand.

3.4 SPATIAL DEVELOPMENT FRAMEWORK

Figure 5 below is an extract of the **Greater Walmer and Fairview Spatial Development Framework** ⁽⁵⁾ prepared by Metroplan on behalf of the Nelson Mandela Bay Municipality. The SDF provides for low density residential use with a net density of 2 to 40 units per hectare in the area where the proposed development is located.

Figure 5: Greater Walmer Spatial Development Framework

3.5 PUBLIC TRANSPORT

No formal public transport facilities are in place in the immediate vicinity of the proposed development. However, public transport services in the form of scheduled bus and informal minibus taxi modes operate along Glendore Road through Pari Park and on Gladys Road, Merle Road and Cyril Street in Providentia.

Public Transport stops are located along Glendore Road at regular intervals.

3.6 NON-MOTORISED TRANSPORT

Pedestrian sidewalks are provided along Glendore Road from Marcia Way to the north of Pari Park to a point approximately 90m south of Michaelangelo Avenue.

4 CAPACITY ANALYSIS – BEFORE DEVELOPMENT

Level of Service (LOS) is defined as the operating condition that may occur at a junction when it accommodates various traffic volumes. LOS is a qualitative measure of the effect of speed, travel time, traffic interruptions, freedom to manoeuvre, safety, driving comfort and convenience, and operating costs. **LOS D** is considered an acceptable design standard. The LOS applicable to junctions under various control conditions, as defined in the **Highway Capacity Manual** ⁽⁶⁾ are indicated in **Table 2** below:

12

Level of	Control delay per ve (Including geo	LOS Colour	
Service	Signals and Roundabouts	Stop Signs and Yield Signs	Rating
А	d ≤ 10	d ≤ 10	Excellent
В	10 < d ≤ 20	10 < d ≤ 15	Very Good
С	20 < d ≤ 35	15 < d ≤ 25	Good
D	35 < d ≤ 55	25 < d ≤ 35	Acceptable
E	55 < d ≤ 80	35 < d ≤ 50	Poor
F	80 < d	50 < d	Very Poor

Table 2: Level of Service definitions for Vehicles (Highway Capacity Manual ⁽⁶⁾ method)

The traffic situation was analysed in order to determine the Level of Service at which the affected junctions would operate before development occurs for the 2024 development horizon.

The capacity analysis was undertaken using the **SIDRA Intersection 9 Network** ⁽⁷⁾ capacity analysis method but applying the **Highway Capacity Manual** ⁽⁶⁾ gap acceptance criteria for unsignalised junctions.

The results are shown in Table 3 below and the detailed SIDRA output sheets attached as Annexure C.

Table 5: Results of Junction Capacity Analysis – 2024 Defore Developmen	Table	3:	Results	of .	Junction	Ca	pacity	Anal	vsis –	2024	Bet	fore	Devel	opment
---	-------	----	---------	------	----------	----	--------	------	--------	------	-----	------	-------	--------

		Inters	ection		Side Road				
Intersection	Ave Delay (sec)		LOS *		Ave Del	ay (sec)	LOS		
	AM	РМ	AM	РМ	AM	РМ	AM	РМ	
Glendore / Michaelangelo	2.7	1.6	A*	A*	10.7	9.7	В	А	
Glendore / Chopin	0.7	1.5	A*	A*	10.5	9.3	В	А	
Merle / Blumberg	5.3	5.1	A*	A*	5.2	5.3	A	A	

* - SIDRA Intersection Network ⁽⁷⁾ does not calculate junction LOS for stop-controlled junctions. The LOS indicated is sourced from the Highway Capacity Manual ⁽⁶⁾ (Table 1 above).

As can be seen from the results contained in **Table 3**, no capacity problems are experienced at the affected junctions under current conditions.

5 TRIP GENERATION

TMH 17 Volume 1 - South African Trip Data Manual⁽²⁾ recommends the following peak hour trip generation rates for each category for the weekday AM and PM peak hours as indicated in **Table 4** below.

13

Fable 4: Peak Hour	[.] Trip	Generation	Rates
---------------------------	-------------------	------------	-------

	Trine Dev Unit	% Split						
Development Category	Trips Per Unit	Α	м	РМ				
	AM/PM	IN	OUT	IN	OUT			
Single Residential Units (210)	1 / Unit	25	75	70	30			
Townhouses (231)	0.85 / Unit	25	75	70	30			
Multi-level townhouses (232)	0.75 / Unit	25	75	70	30			
Retirement Village (251)	0.35 / Unit	40	60	50	50			

5.1 LOW DENSITY RESIDENTIAL – SINGLE DWELLING UNITS (CATEGORY 210)

For a development of 32 units this relates to the following peak hour trip generation:

TGR (Weekday AM/PM)	=	1.0 * No of units
	=	1.0 * 32
	=	32 trips (in and out)

5.2 TOWNHOUSES (CATEGORY 231)

For a development of 174 units this relates to the following peak hour trip generation:

TGR (Weekday AM/PM)=0.85 * No of units=0.85 * 174=**148 trips** (in and out)

5.3 MULTI-LEVEL TOWNHOUSES (CATEGORY 232)

For a development of 56 units this relates to the following peak hour trip generation:

TGR (Weekday AM/PM) = 0.75 * No of units= 0.75 * 56= **42 trips** (in and out)

5.4 RETIREMENT VILLAGE (CATEGORY 251)

For a development of 69 units this relates to the following peak hour trip generation:

<u>TGR (Weekday AM/PM)</u> = 0.35 * No of units

= **24 trips** (in and out)

5.5 SUMMARY OF TRIPS

A summary of generated trips for the proposed development is indicated in Table 5 below.

Table 5: Peak Hour Trip Generation Summary	able 5: Peak Hour Trip Go	eneration Summary
--	---------------------------	-------------------

Catagoni	A	N	РМ			
Category	Trips In	Trips Out	Trips In	Trips Out		
Single Residential Units (210)	8	24	22	10		
Townhouses (231)	37	111	104	44		
Multi-level townhouses (232)	11	32	29	13		
Retirement Village (251)	10	14	12	12		
Total	65	181	167	79		

6 TRIP DISTRIBUTION

The distribution of trips to and from the development were determined by using the observed traffic flows at the surveyed intersections as a basis, as well as the location of employment areas, shops and schools in relation to the development. The following distribution has been assumed:

AM Peak Hour

- Merle Road 60% of traffic of which:
 - 80% to/from north via Merle Road; and
 - 20% to/from east via Blumberg Road and Michelangelo Avenue.
- Chopin Road 40% of traffic of which:
 - 20% to/from south via Glendore Road; and
 - 80% to/from north via Glendore Road.

PM Peak Hour

- Merle Road 60% of traffic of which:
 - 80% to/from north via Merle Road; and
 - 20% to/from east via Blumberg Road and Michelangelo Avenue.
- Chopin Road 40% of traffic of which:
 - 20% to/from south via Glendore Road; and
 - 80% to/from north via Glendore Road.

Using these assignments, the projected traffic volumes generated by the development and the projected volumes added to the existing (2024) background traffic are indicated.

The generated peak hour trips are indicated on Figure 6.

The generated trips added to the normal weekday AM and PM peak hour volumes for the 2024 and 2029 development horizon are indicated on **Figure 7** and **Figure 8** respectively overleaf.

7 ACCESS ARRANGEMENTS

7.1 LOCATION

Access to the development is proposed from Blumberg Road opposite Merle Road and via Chopin Road at the eastern boundary of erf 325 as indicated on **Figure 9**.

It is noted that current peak hour traffic volumes on Blumberg Road, Merle Road, Chopin Road and Michaelangelo Avenue are low, commensurate with quiet residential roads with little through traffic. Further these streets are residential in character and every effort should be made to minimise impact on the existing environment.

As such, access to the development has been planned such that traffic will approach along the most practical and direct routes from Glendore Road, namely Merle Road via Gladys Road, Blumberg Road via Michelangelo Avenue and Chopin Road. This will ensure that impact on these streets is kept to a minimum while at the same time evenly distributed.

Access to properties south of erf 325 is currently obtained from Chopin Road, and provision for this access to remain in place has been made in the proposed development layout.

Chopin Road currently terminates at the eastern boundary of erf 325 and will extend into erf 325 as part of the development, increasing traffic along Chopin Road and changing its character from a cul-de-sac to a through road. As such, it is proposed that the developer provide traffic calming measures in the form of speed humps along Chopin Road as indicated on **Figure 9** to ensure that the additional traffic moves at acceptable speeds.

Given that the main traffic movement at the Merle Road / Blumberg Road intersection is currently between Merle Road and Blumberg Road east, there are no controls on these two approaches. However, with the planned new access on Blumberg Road, it will be necessary to provide stop control on the Merle Road approach given that vehicles accessing the development will conflict with vehicles turning right from Blumberg Road to Merle Road, as indicated on **Figure 9**.

Traffic calming measures in the form of speed humps do currently do exist on Blumberg Road.

View towards access from east along Blumberg Road

7.2 ACCESS CONFIGURATION

P

The access points were assessed in terms of in terms of **TRH26: South African Road Classification and Access Management Manual** ⁽³⁾.

Given that a maximum of 246 peak hour trips would be generated by the development, of which a maximum of 100 vehicles would enter from Blumberg Road and 67 vehicles from Chopin Road during the PM peak hour, this relates to between 1 and 2 vehicles entering the site every minute (one vehicle every 40 seconds) on average.

Service flow rates at access-controlled entrances in vehicles / hour from Table 30 of TMH 16 Vol 2 - South African Traffic Impact and Site Assessment Standards and Requirements Manual ⁽⁸⁾ are indicated in Table 6 below.

As noted, the flow rates range from the slowest throughput -50 vph in the case of intercom operated gates to 480 vph in the case of swiping magnetic cards. The higher the service flow rate, the less likely that there will be congestion at the entrance.

Service flow rates (veh/h) for different control types							
Control type	Service flow (vph)						
Swipe magnetic card	480						
Remote controlled gates	450						
Ticket dispenser: Automatic	390 -450						
Ticket dispenser: Push button	220 - 360						
Pin number operated gates	150						
Pay fee on entry	120						
Cell-phone operated gates (gate opens when a call is received)	100						
Manual recording, Visitor completes form	80						
Intercom operated gates (visitor contacts resident by intercom)	50						

Table 6: Access Control Service Flow Rates

The number of entry lanes and the number of vehicles queuing in each lane are calculated after determining a Traffic Ratio over all entry lanes using the following formula:

Traffic ratio =
$$\frac{\text{Total Volume / PHF}}{\text{Service flow rate}} \cdot 100$$

The number of lanes and queue length is then determined from Table 7 below (Table 31 in TM16 Vol 2).

95 th Percentile queue length (vehicles per channel) at controlled accesses										
Storage (Vehs)	Tr	Traffic ratio (Percentage) for different Numbers of Channels								
N _{Que}	1 Channel	2 Channel	3 Channel	4 Channel	5 Channel	6 Channel				
1	23	58	97	140	188	235				
2	39	94	155	220	292	363				
3	49	115	186	261	341	421				
4	56	128	205	283	367	449				
5	61	137	216	297	382	466				
6	65	143	224	306	392	476				
7	68	147	229	312	399	484				
8	70	151	233	317	403	489				
9	71	153	236	321	407	493				
10	73	155	239	324	410	496				

Table 7: Access Control Queue Lengths

Given a peak hour volume of 100 vehicles entering the residential development from Blumberg Road and 67 from Chopin Road the traffic ratios for each control type are indicated in **Table 8** and **Table 9** below.

20

Peak Hour Trips - IN	100			0-		0-
Access Control Options	Flow - Vph	Traffic ratio	Table 5	Length Veh	Lanes Required	Length m
Swipe Magnetic card	480	23.1	39.0	2	1	13
Remote controlled gates	450	24.7	39.0	2	1	13
Pin number operated gates	150	74.1	94.0	2	2	13
Cell-phone operated gates (gate opens when a call is received)	100	111.1	115. 0	4	2	26
Manual Recording (Visitor Completes form)	80	138.9	140. 0	2	3	13
Intercom Operated Gates (Visitor contacts resident by Intercom)	50	222.2	224. 0	3	4	19.5

Table 8: Access Control Queue Lengths for erf 325, Theescombe – Blumberg Road

Table 9: Access Control Queue Lengths for erf 325, Theescombe – Chopin Road

Peak Hour Trips - IN	67			Q-		Q-
Access Control Options	Flow - Vph	ratio	Table 5	Length Veh	Lanes Required	Length m
Swipe Magnetic card	480	15.5	23.0	1	1	6.5
Remote controlled gates	450	16.5	23.0	1	1	6.5
Pin number operated gates	150	49.6	58.0	1	2	6.5
Cell-phone operated gates (gate opens when a call is received)	100	74.4	94.0	2	2	13
Manual Recording (Visitor Completes form)	80	93.1	94.0	2	2	13
Intercom Operated Gates (Visitor contacts resident by Intercom)	50	148.9	151. 0	2	3	13.

Should the access be security controlled, the optimum solution would be to configure as either magnetic cards, remote-controlled or pin entry gates with two entering lanes and stacking distance of a minimum of 13m (2 vehicles) for the Blumberg Road access and 2 lanes with 1 vehicle stacking distance for the Chopin Road access as indicated in **Table 8** and **Table 9** above

Provision has been made for two entering lanes at the Blumberg Road and Chopin Road accesses with a stacking distance of 3 and 1 vehicle respectively vehicles per lane and as indicated on **Figure 9**.

8 CAPACITY ANALYSIS – AFTER DEVELOPMENT

8.1 2024 AFTER DEVELOPMENT

After adding generated peak hour traffic volumes to the peak hour volumes, the traffic situation was analysed in order to determine the LOS at which the affected junctions and access point would operate during a normal weekday after development occurs.

21

The results are shown in Table 10 below and the detailed SIDRA output sheets attached as Annexure D.

 Table 10: Results of Junction Capacity Analysis – 2024 After Development

	Intersection				Side Road				
Intersection	Ave Delay (sec)		LOS *		Ave Del	ay (sec)	LOS		
	AM	РМ	АМ	PM	АМ	РМ	АМ	РМ	
Glendore / Michaelangelo	2.8	1.7	A*	A*	11.0	10.7	В	В	
Glendore / Chopin	2.0	2.9	A*	A*	10.5	9.6	С	А	
Merle / Blumberg	7.5	7.3	A*	A*	8.2	8.2	А	A	

* - SIDRA Intersection Network ⁽⁷⁾ does not calculate junction LOS for stop-controlled junctions. The LOS indicated is sourced from the Highway Capacity Manual ⁽⁶⁾ (Table 2 above).

As can be seen from the results contained in **Table 10**, the additional traffic generated by the proposed development has little or no impact on the operation of the affected junctions in terms of capacity.

8.2 2029 AFTER DEVELOPMENT

After adding generated peak hour traffic volumes to the escalated background peak hour volumes during a normal weekday, the traffic situation was analysed in order to determine the LOS at which the affected junctions and access point would operate after development occurs for the 2029 development horizon.

The results are shown in Table 11 below and the detailed SIDRA output sheets attached as Annexure E.

 Table 11: Results of Junction Capacity Analysis – 2029 After Development

	Intersection				Side Road				
Intersection	Ave Delay (sec)		LOS *		Ave Del	ay (sec)	LOS		
	AM	РМ	AM	РМ	AM	РМ	АМ	РМ	
Glendore / Michaelangelo	2.9	1.7	A*	A*	11.6	11.1	В	В	
Glendore / Chopin	2.0	2.9	A*	A*	11.0	9.9	В	А	
Merle / Blumberg	7.6	7.3	A*	A*	8.2	8.2	А	А	

* - **SIDRA Intersection Network** ⁽⁷⁾ does not calculate junction LOS for stop-controlled junctions. The LOS indicated is sourced from the **Highway Capacity Manual** ⁽⁶⁾ (**Table 2** above).

As can be seen from the results contained in **Table 11**, the additional traffic generated by the development has little or no impact on the operation of the affected junctions in terms of capacity.

	Mar A
	A
	SSINI ROAL
	10
Cliftada	
KE ROAD	
	2//~
	- And
Participant and	Tel Par
	\overline{K}
	0
	2
	CONTRACT NO.
SCRIPTION	DWG.NO.
IRE 9: PROPOSED SITE AND ACCESS CONFIGURATION	2219-P-009

9 PUBLIC TRANSPORT OPERATIONS AND PEDESTRIAN ARRANGEMENTS

No additional public transport facilities are required.

Provision for pedestrian movement has been made on the site to access buildings.

The proposals are indicated on Figure 9.

10 PARKING AND SERVICE VEHICLE REQUIREMENTS

10.1 PARKING REQUIREMENTS

The parking requirement as specified in the NMBM Zoning Scheme (based on **National Department of Transport standards**⁽⁹⁾) for residential developments ranges from 1 to 1.5 bays plus 0.5 bays visitor bays per unit depending on the number of habitable rooms in the unit.

2 bays per unit will be provided for both the single residential and townhouse units. The required parking bays will be indicated on the site development plan.

10.2 SERVICE VEHICLE REQUIREMENTS

Suitable arrangements have been made to accommodate service vehicles in the development layout vehicles will be able to access the development from Merle and Glendore Roads.

11 CONCLUSIONS

The following conclusions can thus be drawn from the study:

- Based on historical growth per annum and development potential in the area background traffic can escalate at 2.0% per annum;
- Under existing traffic conditions no problems are experienced at the affected junctions in terms of capacity;
- The proposed development generates a total of 246 peak hour vehicle trips during typical weekday AM and PM peak hours;
- The expected peak hour traffic volumes are well withing the design capacity for residential streets;
- Access to the development can safely be accommodated from Blumberg Road and Chopin Road as indicated on Figure 9 in order to minimise the impact of the additional traffic on existing residential streets adjacent to the proposed development. Additional stop control will be provided on the Merle Road approach to improve safety at the access intersection;
- Given that 100 vehicles would enter from Blumberg Road and 67 vehicles from Chopin Road during the PM peak hour access control by means of magnetic swipe cards, remote-controlled or pin entry gates with two entering lanes and stacking distance of a minimum of 13m (2 vehicles) for the Blumberg Road access and 2 lanes with 1 vehicle stacking distance for the Chopin Road access would be required to prevent traffic impacting on municipal streets;
- When considering the traffic generated by the proposed development added to existing traffic, the affected intersections and access point all operate at acceptable Levels of Service in terms of capacity for both the 2024 and 2029 development horizons;
- While delays are experienced by traffic entering Glendore Road (LOS B) during the PM peak hour, gaps are created in the Glendore Road traffic as a result of the traffic calming measures in place on both Glendore Road approaches to Michaelangelo Avenue;
- Additional traffic generated by the proposed development has little impact on the affected intersections, thus the additional traffic will not significantly reduce available intersection capacity and as such no improvements are required at the affected intersections due to the additional traffic generated by the proposed development; and
- As access to the development is also provided from Chopin Road, traffic along this road will increase, changing it character as a cul-de-sac and requiring traffic calming measures in the form of speed humps as indicated on **Figure 9** to ensure that the impact of additional traffic is minimized.

12 RECOMMENDATIONS

F

In view of the findings of this study, it is recommended that:

- This TIA be approved by the Nelson Mandela Bay Municipality;
- The access to the proposed development be obtained from Blumberg Road opposite Merle Road and Chopin Road with the access points configured as indicated on **Figure 9**;
- The access points be configured with a minimum of two entering lanes and stacking distance of a minimum of 13m (2 vehicles) for both the Blumberg Road access and the Chopin Road access;
- The developer installs traffic calming measures in the form of speed humps on Chopin Road as indicated on **Figure 9**; and
- All costs related to the provision of the access points and traffic calming measures, including the provision of road signs and markings are to be met by the developer.

13 REFERENCES

- 1. *Joubert, Sampson, et al,* **TMH 16 Volume 1- South African Traffic Impact and Site Assessment Manual,** COTO, September 2013.
- 2. *Joubert, Sampson, et al,* **TMH 17 Volume 1- South African Trip Data Manual**, COTO, September 2013.
- 3. *COTO*, **TRH 26 South African Road Classification and Access Management Manual**, SANRAL, August 2012.
- 4. *RGM Consortium*, **NMBM Comprehensive Integrated Transport Plan 2023/2028**, NMBM, November 2023.
- 5. Metroplan, et al, Greater Walmer Local Spatial Development Framework, NMBM, 2013.
- 6. Transportation Research Board, Highway Capacity Manual, 2000.
- 7. Akcelik & Associates (Pty) Ltd, SIDRA Junction Network 9 User Guide, SIDRA Solutions, April 2019.
- 8. *Joubert, Sampson, et al,* **TMH 16 Volume 2- South African Traffic Impact and Site Assessment Standards and Requirements Manual**, COTO, September 2013.
- 9. Bruinette Kruger Stoffberg Inc, Parking Standards (Second Edition), Department of Transport, November 1985.

ANNEXURE A Land Use Rights

Town Planning System

TPS20002

INFORMAL TOWN PLANNING ENQUIRY

Allotment Area: Consolidated:	THEESCOMBE	Erf Number: Subdivided:	325	Sub Number: 0
Area:	174370 m2	Proclaimed Main Road: Structure Plan:	0	History: Registered: Parking:
Consent:		N-Tie: CBD:		Corner:

Zone Information:

	Building		Side and	Height				
Zone	Line	Coverage	Rear Space	Restriction	Density RVA	NCU	FSI	Area (m2)
Single Residential							0.00	174,370.00
Zone 2								
Single Residential							0.00	0.00
Zone 2								
Single Residential							0.00	0.00
Zone 2								
Single Residential							0.00	0.00
Zone 2								

Notes:

ERF FALLS WITHIN THE LOVEMORE PARK SCHEME AREA TPA 5600 PENDING APPLICATION WAS MADE TO REZONE SUBDIVIDE + INCORPORATE THIS ERF INTO THE MUNICIPAL AREA IN 1998 - NEVER FINALISED NEW APPLICATION SUBMITTED IN 2004 - ERF NOW PART OF METRO SUBDIVISION APPLICATION NO. 5571 SEE TPA 8478 & HYBRID SUBDIVISION NO. 7266 FOR ALL DETAILS ANNEXURE B Peak Hour Traffic Counts

Project :	TIA : P	ROPOS	ED DE	/ELOPM	IENT IN	1 THEES	SCOMBE						Day &	date :	24/01	2024			
Intersection :	MERLE	E ROAD	/ BLUN	IBERG F	ROAD					NO. 1			Time p	eriod:	06:00	- 09:00			
STARTING			-		E	BLUMBE	RG RO	AD		MERL	E ROAD		E	BLUMBE	RG ROAD	INTE	R-	AM PEAK HOUR	AM PEAK HOUR
TIME		North	bound			Wes	stbound			Sout	hbound			East	tbound	SECTIC	N	2024	2029
	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right Total	Total Ho	ur		
6:00	0	0 0	0	0	0	0 0	0	0 0	() () 1	1	()	0 0	0 1		9 8 7	9 8 7
6:15	0	0 0	0	0	0	0 0	1	1	2	2 (0 0	2	2 ()	0 0	3		13 0 48	15 0 56
6:30	0	0 0	0	0	0	0 0	2	2 2	7	7 () 1	8	3	1	0 0	1 11			
6:45	0	0 0	0	0	0) 2	2	2 4	8	8 () 2	10) .	1 :	2 0	3 17	32	│,< ↓ └♪ . └	│┥┥ ↓ └→ .└─── │
7:00	0	0 0	0	0	0	0 0	7	' 7	14	4 () 5	19	9	3	5 0 1	3 39	70	10 12 _ 17 6	10 14 _ 1 20 6
7:15	0	0 0	0	0	0) 1	8	9 9	18	в () 1	19)	3	1 0	4 32	99	11 11 → 4 5	11 13 → ← 5 5
7:30	0	0 0	0	0	0) 1	0) 1	8	в (0 5	13	3 () :	3 0	3 17	105		
7:45	0	0 0	0	0	0	0 0	1	1	7	7 () 2	g		1	1 0	2 12	100	│	│ ─────│ * ←┐ ♠ ┌ → ▼
8:00	0	0 0	0	0	0	1	3	3 4	2	2 () 1	63	3 4	1	1 0	5 12	73		
8:15	0	0 0	0	0	0	0 0	1	1	2	2 () 3	5	5	1	0 0	1 7	48	0 0 0	0 0 0
8:30	0	0 0	0	0	0	0 0	0	0 0	2	2 () 1	3	3	2	0 0	2 5	36	1 2 3	1 2 3
8:45	0	0 0	0	0	0) 1	2	2 3	() () 2	2	2	1	1 0	5 10	34		
Total	0	0 0	0	0	0	6	27	33	70) () 24	94	25	5 14	4 0 3	9 166		-	-
Peak hour	0	0 0	0	0	0	4	17	21	48	3 0) 13	61	12	2 1'	1 0 2	3 105			
Peak 15 min				0				9				19)		1	3 39			
PHF				#DIV/0!				0.58				0.80)		0.4	4 0.67			
				0															
r																			
Project :	TIA : P	ROPOS	ED DE	/ELOPM	IENT IN	1 THEES	SCOMBE	=					Day &	date :	24/01	2024			
Intersection :	MERLE	E ROAD	/ BLUN	IBERG F	ROAD					NO. 1			Time p	eriod:	15:00	- 18:00		N	
STARTING			-		E	BLUMBE	RG RO	AD		MERL	E ROAD		E	BLUMBE	RG ROAD	INTE	R-	PM PEAK HOUR	PM PEAK HOUR
TIME		North	bound			Wes	stbound			Sout	hbound			East	tbound	SECTIC	N	2024	2029
	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right Total	Total Ho	ur		
15:00	0	0 0	0	0	0) 1	2	2 3	2	2 () 2	4	، t	1	1 0	5 12		MERLE ROAD	MERLE ROAD
15:15	0	0 0	0	0	0	0 0	2	2 2	3	3 () 3	6	6 :	3	1 0	4 12		9 8 7	9 8 7
15:30	0	0 0	0	0	0	0 0	4	4	5	5 () 3	8	3	1	0 0	1 13		17 0 15	20 0 17
15:45	0	0 0	0	0	0) 1	3	3 4	() () 1	1	· ·	1	0 0	1 6	43		
16:00	0	0 0	0	0	0	0 0	3	3 3	2	2 () 1	3	3	1	0 0	1 7	38	│,<' ★ └ᆃ , └	│┥┥ ♥ └╇╷└──_
16:15	0	0 0	0	0	0	0 0	2	2 2	3	3 () 2	5	5	2	0 0	2 9	35	10 13 _ 18 6	10 15 _ 1 1 6
16:30	0	0 0	0	0	0) 1	2	2 3	8	в (0 6	14	ļ 4	1	0 0	4 21	43	11 6 → ← 5 5	11 7 → ← 6 5
16:45	0	0 0	0	0	0) 3	2	2 5	2	2 () 2	4	1 :	2	0 0	2 11	48		
17:00	0	0 0	0	0	0	0 0	7	7	3	3 () 4	7	7 ·	1	1 0	2 16	57	│	│ ──────── ┥ ┌→╹ ┌─── │ │
17:15	0) 0	0	0	0) 1	7	' 8	2	2 () 5	7	7 (6	5 0 1	1 26	74		
17:30	0) 0	0	0	0) 1	3	3 4	1	1 () 3	4	<u>ا</u>	1 (0 0	4 12	65	0 0 0	0 0 0
17:45	0	0 0	0	0	0	0 0	0	0 0	1	1 () 2	3	3	1	0 0	1 4	58	1 2 3	1 2 3
Total	0	0 0	0	0	0	8	37	45	32	2 () 34	66	6 30) 8	3 0 3	3 145			
Peak hour	0	0 0	0	0	0	5	18	23	15	5 0) 17	32	2 13	3 6	6 0 1	74		-	-
Deal 45 min					-	-	-												
Peak 15 min				0				8				14	l		1	1 26			

Project :	TIA : PI	ROPOSE	ED DEV	/ELOPM	ENT IN	THEES	COMBE						Day &	date :	24/01/	2024				
Intersection :	GLEND	ORE RO	DAD / N	IICHAEL	ANGEL	O AVE	NUE			NO. 2			Time p	eriod:	06:00	- 09:00				
																				- Period
STARTING	G	LENDO	RE RO/	٩D		ROSSI	NI ROA	D	0	GLENDO	DRE ROA	D	MICH	AELANG	GELO AVENUE	IN	ITER-		AM PEAK HOUR	AM PEAK HOUR
TIME		North	oound			Wes	stbound			Sout	hbound			East	bound	SEC	TION		2024	2029
	Left	Thru	Right	Total	Left	Thru	Riaht	Total	Left	Thru	Riaht	Total	Left	Thru	Right Total	Total	Hour			
6:00	0	10	0	10	0	0	1	1	0	f	5 1	6	C		0	17			9 8 7	9 8 7
6:15	1	16	0	17	5	1	2	2 8	0	1	7 1	8	1	(1	2 35			8 287 4	9 333 5
6:30	1	24	0	25	8	0) 3	3 11	1	23	3 2	26	2	0	8 1	72				
6:45	5	31	0	36	12	0) 1	13	1	48	3 3	52	4		11 1	5 116	240		ፈ	│
7:00	5	20	0	25	6	2	10) 18	0	100) 4	104	4		20 2	4 171	394	10 14		10 16 † 20 6
7:15	6	20	1	27	7	1	1	9	1	77	7 0	78	3	1	14 1	8 132	491	11 1		
7:30	3	32	6	41	7	0) 5	5 12	2	62	2 1	65	3		14 1	7 135	554	12 59	32 4	
7:45	1	23	1	25	. 5	0) 3	3 8	0	41	1 6	47	3	(7 1	90	528		── │ ♥ ≪ ┐ ♠ ┌╼♥ ┌── ^{──} ┘ `	║ [┈] └──────┤ ┽ ┥╴┍⋺♥┌───┘╵║
8.00	2	13	2	17	4	0	1	5	2	36	5 2	40	3		5	B 70	427			
8:15	1	20	0	21	2	0	1	3	1	15	5 0	16	2	1	1	4 44	339		19 103 7	22 119 8
8:30	1	17	0	18	4	0) () 4	3	27	7 2	32	1	(3	4 58	262		1 2 3	1 2 3
8:45	0	22	0	22	5	0) 5	2	25	5 2	29	2		0	2 58	230			
Total	26	248	10	284	65	4	28	2 97	13	466	24	503	- 28		84 11	1 998				
Peak hour	19	103	7	129	32	3	17	52	4	287	7 8	299	14	1	59 7	4 554			SEENDORE ROAD	GEENBORE ROAD
Peak 15 min	10	100		41	02	Ŭ		18		201	Ŭ	104		· ·	24	1 171				
PHF	1			0.79				0.72				0.72			0.7	7 0.81				
0	-11							•	d 1											
Project :	TIA : PI	ROPOSE	ED DEV	/ELOPM	ENT IN	THEES	COMBE						Day &	date :	24/01/	2024				
Intersection :	GLEND	ORE RO	DAD / N	IICHAEL	ANGEL	O AVE	NUE			NO. 2			Time p	eriod:	15:00	- 18:00			N	
													-							
STARTING	G	LENDO	RE RO/	٩D		ROSSI	NI ROA	D	0	GLENDO	DRE ROA	D	MICH	AELANG	GELO AVENUE	IN	ITER-		PM PEAK HOUR	PM PEAK HOUR
TIME		North	bound			Wes	stbound			Sout	hbound			East	bound	SEC	TION		2024	2029
	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right Total	Total	Hour			
15:00	2	24	2	28	7	0) 5	5 12	5	36	6 1	42	C	0	2	2 84			GLENDORE ROAD	GLENDORE ROAD
15:15	4	36	0	40	0	0) 8	8 8	2	28	3 2	32	2	(4	6 86			9 8 7	9 8 7
15:30	3	20	1	24	0	0) 2	2 2	5	19	9 3	27	2	2	3	7 60			8 123 35	9 143 41
15:45	3	29	2	34	0	2	2 3	3 5	2	19	9 2	23	C	0	0	0 62	292			
16:00	4	35	4	43	3	0) 4	1 7	0	24	4 2	26	1	(1	2 78	286		≼-' ↓ └♪	
16:15	2	29	3	34	1	0) 1	2	11	28	3 2	41	C	0	1	1 78	278	10 7		10 8 1 1 6
16:30	4	46	1	51	0	0) 3	3 3	11	41	1 1	53	5	1	6 1	2 119	337	11 3	→ 0 5	11 3 → 4 0 5
16:45	4	37	1	42	0	0) 2	2 2	3	29	9 1	33	C	1	0	1 78	353	12 13	— 3 4	12 15 _ 3 4
17:00	7	45	2	54	2	0) 6	6 8	8	23	3 3	34	1	(3	4 100	375		──]♥◀─┐ ♠ ┌╼♥ ┌────┘	║ └────┐Ÿ┥┐ ┽ ┌╼Ÿ┌───┘ ║
17:15	5	30	1	36	1	0) 1	2	13	30) 3	46	1	1	4	6 90	387			
17:30	3	28	0	31	0	2	3	3 5	8	24	4 6	38	2	0	1	3 77	345		20 158 5	23 183 6
17:45	1	20	1	22	0	0) 1	1	6	- 19	3 3	28	2	0	1	3 54	321		1 2 3	1 2 3
Total	42	379	18	439	14	4		57	74	320) 29	423	16	F	26 4	7 882				
Peak hour	20	158	.0	183	. 3	0	12	15	35	123	3 8	166	7	3	13 2	3 387			GLENDORE ROAD	GLENDORE ROAD
Peak 15 min			-	54			1	8				53			1:	2 119				
				5.		1	1					50			· · · · ·					
		1		0.07				o :=				0 = 0		1		0.01				

Project :	TIA : PI	ROPOS	ED DE	/ELOPN	IENT IN	THEES	COMBE					Day a	k date :		24/01/20	24			
Intersection :	GLEND	ORE R	OAD / C	HOPIN	ROAD					NO. 3		Time	period:		06:00 - 0	9:00			1 5 1
STARTING		CHOPI	N ROAI)		GLENDO	DRE RO	AD			-		GLENDO	RE ROA	D	INTER-		AM PEAK HOUR	AM PEAK HOUR
TIME		North	nbound			Wes	stbound			South	nbound		East	bound		SECTION		2024	2029
	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right Total	Left	Thru	Right	Total	Fotal Hour			
6:00	1	0	0	1	0	7	· C) 7	(0 0	0 0		0 5	0	5	13		9 8 7	9 8 7
6:15	3	0	1	4	0	16	i C) 16	(0 0	0 0		0 14	3	17	37		0 0 0	0 0 0
6:30	7	0	0	7	0	15	i () 15	(0 0	0 0		0 25	1	26	48			
6:45	5	0	6	11	0	31	C	31	(0 0	0 0		0 60	1	61	103 201		♦ └┾ ़ └───_	
7:00	8	0	2	10	0	19	0) 19	(0 0	0 0		0 141	2	143	172 360	10 0		10 0 _ 1 6
7:15	5	0	0	5	1	24	. 0	25	(0 0	0 0		0 86	2	88	118 441	11 386	→ 114 5	11 447 → 132 5
7:30	2	0	0	2	0	40	0	40	(0 0	0 0		0 99	4	103	145 538	12 9		
7:45	2	0	0	2	0	21	0	21	(0 0	0 0		0 43	0	43	66 501			
8:00	2	0	2	4	1	12	0	13	(0 29	1	30	47 376			
8:15	1	0	3	4	1	19		20	(0 23	0	23	47 305		20 0 8	23 0 9
8:30	3		1	4	0	15		15					0 2/	3	30	49 209		1 2 3	1 2 3
0.40 Tatal	4	0	10	4	0	10		007					0 24	2	20	45 166			
Total Book bour	43	0	15	58	3	234		237					0 296	19	205	890 529		CHOPIN ROAD	
Peak 15 min	20	0	0	20	1	114		40	L L	, ,			0 300	9	395 143	172			
PHE			1	0.64				0.72			#####				0.69	0.78			
Project : Intersection :	TIA : PI GLEND	ROPOS ORE R	ED DE OAD / C	/ELOPN HOPIN	IENT IN ROAD	THEES	COMBE			NO. 3		Day a Time	& date : period:		24/01/20 15:00 - 1	24 8:00		N	Ň
STARTING		CHOPI	N ROAI)	(GLENDO	DRE RO	AD			-		GLENDO	RE ROAI	D	INTER-		PM PEAK HOUR	PM PEAK HOUR
TIME		North	nbound			Wes	stbound			South	nbound		East	bound		SECTION		2024	2029
	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right Total	Left	Thru	Right	Total	Fotal Hour			
15:00	5	0	2	7	1	20	0) 21	(0 0	0 0		0 29	9	38	66		-	-
15:15	1	0	0	1	0	27	· C) 27	(0 0	0 0		0 26	2	28	56		9 8 7	9 8 7
15:30	2	0	0	2	2	38	6 C	40	(0 0	0 0		0 22	3	25	67		0 0 0	0 0 0
15:45	3	0	2	5	2	27	· C	29	(0 0	0 0		0 14	1	15	49 238			
16:00	2	0	1	3	1	36	G (37	(0 0	0 0		0 24	4	28	68 240		▲ → ↓ └→ ៱ └────┐ ─	┃ ┌───┘◀
16:15	2	0	0	2	1	37	0	38	(0 0	0 0		0 32	2	34	74 258	10 0		10 0 _ T 6
16:30	1	0	2	3	2	58		60	(0 30	1	37	100 291	11 105		$11 122 \rightarrow \qquad 4 202 5$
16:45	/	0	2	9	2	51		53					0 21	8	29	91 333	12 27		
17:00	0		1	7	5	28		33					0 23	6	29	69 334			
17:30	2		0	2	0	24		0 30					0 31	5	27	53 295		21 0 5	24 0 6
17:45	0		0	0	1	24		24	(0 21	2	23	44 248			
Total	38	0	10	48	18	403		421					0 295	55	350	819			·
Peak hour	21	0	.0	26	10	174		184					0 105	27	132	342		CHOPIN ROAD	CHOPIN ROAD
Peak 15 min		ľ	Ĭ	9			Ĭ	60			0				37	100			
PHF		1	1	0.72				0.77			#####				0.89	0.86			

Project :	TIA : P	ROPOSE	ED DEV	ELOPM	ENT IN	THEES	COMBE						Day &	date :		24/01/2	2024			
Intersection :	BRAHN	IS ROAD	D / CHO	PIN RO	AD					NO. 4			Time p	period:		06:00 -	09:00			
	1				11	01100			-	DDAL	10 0 0 1		n –				1			
STARTING		-				CHOP		J		BRAH		J		СНОРІ	IN ROAL	J	IN	ITER-	AM PEAK HOUR	
TIME	1 - 4	North	Dialet	Tatal	1 - 6	vve:	Stbound	Tatal	1 - 4	Sout	nbound	Tatal	1 - 4	Eas	tbound	Tatal	SEC	TION	2024	2029
0.00	Left	Thru	Right	Total	Len	i nru	Right	Total	Len	Inru	Right	Total	Len	Inru	Right	Total	Total	Hour		
6:15		0	0	0	0					1				1	1 (1			
6:30		0	0	0	0		1	. 3		1	0 0			n -	2 () 2	9			
6:45		0	0	0	0	1		1 1		2		2		0	8 (0 2	11	29		
7:00	0	0	0	0	0	2) 2		4	0 0	4		0	5 () 5	11	39		
7:15	0	0	0	0	0	3) 3		2	0 0	2		0	2 () 2	7	38	11 16 \rightarrow \leftarrow 8	$5 11 19 \rightarrow 49 5$
7:30	0	0	0	0	0	2	1	3		1	0 0	1		0	1 () 1	5	34		
7:45	C	0	0	0	0	0	1	1		3	0 1	4		0	1 () 1	6	29		
8:00	C	0	0	0	0	1	0) 1		3	0 1	4		0	1 () 1	6	24		
8:15	C	0	0	0	0	2	! C) 2	2	2	0 0	2		0	1 () 1	5	22	0 0 0	0 0 0
8:30	C	0	0	0	0	C	3	3 3		2	0 0	2		0 .	4 () 4	9	26	1 2 3	1 2 3
8:45	C	0	0	0	0	3	C C) 3	4	4	0 0	4		0	1 () 1	8	28		
Total	0	0	0	0	0	19	8	27	26	6 () 5	31		1 27	7 (28	86		-	-
Peak hour	0	0	0	0	0	8	1	9	ç) (0 0	9	(D 16	6 () 16	34			
Peak 15 min				0				3				4				8	11			
PHF				#DIV/0!				0.75				0.56				0.50	0.77	•		
Project : Intersection :	TIA : P BRAHN	ROPOSE /IS ROAE	ED DEV D / CHO	elopm Pin Ro	ENT IN AD	THEES	COMBE	1		NO. 4			Day & Time p	date : period:		24/01/2 15:00 -	2024 18:00		N	Ň
STARTING		-				CHOP	IN ROAI)	T	BRAH	MS ROAD)	I	CHOPI	N ROAI)	IN	ITER-	PM PEAK HOUR	PM PEAK HOUR
TIME		North	bound			We	stbound	-		Sout	hbound	-		Eas	tbound	-	SEC	TION	2024	2029
	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Total	Hour		
15:00	C	0	0	0	0	3	0) 3	(0	0 3	3		0 4	4	7 11	17		BRAHMS ROAD	BRAHMS ROAD
15:15	C	0	0	0	0	1	C) 1	(D	0 1	1		0	1 2	2 3	5		9 8 7	9 8 7
15:30	C	0	0	0	0	22	8	3 30	6	6	8 0	14		0	2 8	3 10	54		15 0 1	17 0 1
15:45	C	0	0	0	0	0	0	0 0	(0	0 1	1		0	2 () 2	3	79		
16:00	C	0	0	0	0	C	0	0 0	(0	0 0	0 0		0	1 :	3 4	4	66		
16:15	C	0	0	0	0	1	1	2	. (0	0 1	1		0	2 .	1 3	6	67	10 0 T 3	6 10 0 T 3 6
16:30	C	0	0	0	0	1	2	2 3	. (0	0 2	2 2		0	7 :	3 10	15	28		5 11 20 13 5
16:45	C	0	0	0	0	4	. 0) 4	. (0	0 4	4		0	2 4	4 6	14	39		
17:00	0	0	0	0	0	6	0	6		1	0 4	5		0	5 3	8 8	19	54		
17:15	0	0	0	0	0		1	1	()	0 5	5		0	3 6	5 9	15	63		
17:30		0	0	0	0	1		1		0	0 1	1		0 .	3 2	2 5	/	55		
Tatal		0	0	0	0				-	7						3	3	44	1 2 3	1 2 3
Total Rock hour	0	0	0	0	0	39	12	51			30	37		3	7 40	14	162			
Peak 15 min		0	0	0	0		3	6 14			15	16				10	10		-	-
PHF				#DIV/0!			1	0,58				0.80				0.83	0.83			
P		1				1	1	0.00		1	1	0.00		1	1	1 0.00	0.00	1	1	n

ANNEXURE C SIDRA OUTPUT SHEETS 2024 Before Development

Site: 03 [[01] 01 am nd (Site Folder: 2024 Before Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2024 Before Development Site Category: Base Year Stop (Two-Way)

Vehic	le Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem F [Total veh/h	nand lows HV] %	Ar F [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Qı [Veh. veh	Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Blumb	erg Road	ł												
5	T1	All MCs	4	0.0	4	0.0	0.015	0.1	LOS A	0.1	0.4	0.11	0.46	0.11	55.6
6	R2	All MCs	18	0.0	18	0.0	0.015	5.6	LOS A	0.1	0.4	0.11	0.46	0.11	53.2
Appro	ach		22	0.0	22	0.0	0.015	4.5	NA	0.1	0.4	0.11	0.46	0.11	53.6
North:	Merle	Road													
7	L2	All MCs	51	0.0	51	0.0	0.052	5.6	LOS A	0.2	1.4	0.06	0.56	0.06	52.7
9	R2	All MCs	14	0.0	14	0.0	0.052	5.5	LOS A	0.2	1.4	0.06	0.56	0.06	52.5
Appro	ach		64	0.0	64	0.0	0.052	5.6	NA	0.2	1.4	0.06	0.56	0.06	52.7
West:	Blum	berg Roa	d												
10	L2	All MCs	13	0.0	13	0.0	0.013	5.5	LOS A	0.0	0.0	0.00	0.57	0.00	53.1
11	T1	All MCs	12	0.0	12	0.0	0.013	4.9	LOS A	0.0	0.0	0.00	0.57	0.00	53.1
Appro	ach		24	0.0	24	0.0	0.013	5.2	NA	0.0	0.0	0.00	0.57	0.00	53.1
All Ve	hicles		111	0.0	111	0.0	0.052	5.3	NA	0.2	1.4	0.06	0.54	0.06	52.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Monday, 23 September 2024 9:02:00 AM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

Site: 03 [[01] 01 pm nd (Site Folder: 2024 Before Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2024 Before Development Site Category: Base Year Stop (Two-Way)

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Derr F [Total veh/h	nand lows HV] %	Ar Fl [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Qi [Veh. veh	Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Blumb	erg Road	ł												
5	T1	All MCs	5	0.0	5	0.0	0.016	0.1	LOS A	0.1	0.5	0.11	0.45	0.11	55.7
6	R2	All MCs	19	0.0	19	0.0	0.016	5.6	LOS A	0.1	0.5	0.11	0.45	0.11	53.3
Appro	ach		24	0.0	24	0.0	0.016	4.4	NA	0.1	0.5	0.11	0.45	0.11	53.8
North	Merle	e Road													
7	L2	All MCs	16	0.0	16	0.0	0.026	5.6	LOS A	0.1	0.7	0.05	0.57	0.05	52.8
9	R2	All MCs	18	0.0	18	0.0	0.026	5.5	LOS A	0.1	0.7	0.05	0.57	0.05	52.5
Appro	ach		34	0.0	34	0.0	0.026	5.5	NA	0.1	0.7	0.05	0.57	0.05	52.6
West:	Blum	berg Roa	d												
10	L2	All MCs	14	0.0	14	0.0	0.011	5.5	LOS A	0.0	0.0	0.00	0.57	0.00	53.0
11	T1	All MCs	6	0.0	6	0.0	0.011	4.9	LOS A	0.0	0.0	0.00	0.57	0.00	53.0
Appro	ach		20	0.0	20	0.0	0.011	5.3	NA	0.0	0.0	0.00	0.57	0.00	53.0
All Ve	hicles		78	0.0	78	0.0	0.026	5.1	NA	0.1	0.7	0.05	0.53	0.05	53.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Monday, 23 September 2024 9:04:17 AM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

Site: 01v [[01] 02 am nd (Site Folder: 2024 Before Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2024 Before Development Site Category: Base Year Stop (Two-Way)

Vehic	le M	ovement	t Perfo	rmar	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
U		Class	FI Total	lows ⊔\/1	H Totol	IOWS	Sath	Delay	Service	QL [\/ob		Que	Stop	NO. OT	Speed
			veh/h	⊓vj %	veh/h	⊓vj %	v/c	sec		veh	m		Nale	Cycles	km/h
South	: Glen	idore Roa	d												
1	L2	All MCs	20	0.0	20	0.0	0.073	3.7	LOS A	0.1	0.5	0.07	0.13	0.07	38.6
2	T1	All MCs	108	0.0	108	0.0	0.073	0.1	LOS A	0.1	0.5	0.07	0.13	0.07	39.6
3	R2	All MCs	7	0.0	7	0.0	0.073	4.6	LOS A	0.1	0.5	0.07	0.13	0.07	39.0
Appro	ach		136	0.0	136	0.0	0.073	0.9	NA	0.1	0.5	0.07	0.13	0.07	39.4
East:	Rossi	ni Road													
4	L2	All MCs	34	0.0	34	0.0	0.069	9.6	LOS A	0.3	1.9	0.46	0.88	0.46	50.2
5	T1	All MCs	3	0.0	3	0.0	0.069	10.8	LOS B	0.3	1.9	0.46	0.88	0.46	45.3
6	R2	All MCs	18	0.0	18	0.0	0.069	11.4	LOS B	0.3	1.9	0.46	0.88	0.46	50.0
Appro	ach		55	0.0	55	0.0	0.069	10.2	LOS B	0.3	1.9	0.46	0.88	0.46	49.9
North	Glen	dore Roa	d												
7	L2	All MCs	4	0.0	4	0.0	0.163	3.5	LOS A	0.1	0.5	0.02	0.02	0.02	39.4
8	T1	All MCs	302	0.0	302	0.0	0.163	0.0	LOS A	0.1	0.5	0.02	0.02	0.02	39.9
9	R2	All MCs	8	0.0	8	0.0	0.163	3.7	LOS A	0.1	0.5	0.02	0.02	0.02	38.9
Appro	ach		315	0.0	315	0.0	0.163	0.2	NA	0.1	0.5	0.02	0.02	0.02	39.9
West:	Micha	aelangelo	Road												
10	L2	All MCs	15	0.0	15	0.0	0.119	8.4	LOS A	0.4	2.9	0.44	0.90	0.44	44.8
11	T1	All MCs	1	0.0	1	0.0	0.119	10.4	LOS B	0.4	2.9	0.44	0.90	0.44	44.8
12	R2	All MCs	62	0.0	62	0.0	0.119	11.2	LOS B	0.4	2.9	0.44	0.90	0.44	44.5
Appro	ach		78	0.0	78	0.0	0.119	10.7	LOS B	0.4	2.9	0.44	0.90	0.44	44.5
All Ve	hicles		583	0.0	583	0.0	0.163	2.7	NA	0.4	2.9	0.13	0.25	0.13	41.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:15:15 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

Site: 01v [[01] 02 pm nd (Site Folder: 2024 Before Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2024 Before Development Site Category: Base Year Stop (Two-Way)

Vehic	cle Mo	ovement	t Perfo	rmai	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Tatal		 Tatal J		Satn	Delay	Service	QU		Que	Stop	No. of	Speed
			veh/h	пvј %	veh/h	⊓vj %	v/c	sec		ven. veh	m Dist		Rale	Cycles	km/h
South	: Glen	dore Roa	ıd												
1	L2	All MCs	21	0.0	21	0.0	0.102	3.5	LOS A	0.0	0.3	0.02	0.07	0.02	38.8
2	T1	All MCs	166	0.0	166	0.0	0.102	0.0	LOS A	0.0	0.3	0.02	0.07	0.02	39.8
3	R2	All MCs	5	0.0	5	0.0	0.102	3.8	LOS A	0.0	0.3	0.02	0.07	0.02	39.2
Appro	ach		193	0.0	193	0.0	0.102	0.5	NA	0.0	0.3	0.02	0.07	0.02	39.7
East:	Rossi	ni Road													
4	L2	All MCs	3	0.0	3	0.0	0.023	8.6	LOS A	0.1	0.6	0.39	0.85	0.39	50.4
5	T1	All MCs	1	0.0	1	0.0	0.023	9.8	LOS A	0.1	0.6	0.39	0.85	0.39	45.6
6	R2	All MCs	13	0.0	13	0.0	0.023	10.0	LOS A	0.1	0.6	0.39	0.85	0.39	50.2
Appro	ach		17	0.0	17	0.0	0.023	9.7	LOS A	0.1	0.6	0.39	0.85	0.39	50.0
North	Glen	dore Roa	d												
7	L2	All MCs	37	0.0	37	0.0	0.092	3.5	LOS A	0.1	0.6	0.05	0.14	0.05	39.1
8	T1	All MCs	129	0.0	129	0.0	0.092	0.0	LOS A	0.1	0.6	0.05	0.14	0.05	39.5
9	R2	All MCs	8	0.0	8	0.0	0.092	4.1	LOS A	0.1	0.6	0.05	0.14	0.05	38.3
Appro	ach		175	0.0	175	0.0	0.092	1.0	NA	0.1	0.6	0.05	0.14	0.05	39.4
West:	Micha	aelangelo	Road												
10	L2	All MCs	7	0.0	7	0.0	0.029	8.6	LOS A	0.1	0.7	0.35	0.87	0.35	46.0
11	T1	All MCs	3	0.0	3	0.0	0.029	9.5	LOS A	0.1	0.7	0.35	0.87	0.35	46.0
12	R2	All MCs	14	0.0	14	0.0	0.029	9.5	LOS A	0.1	0.7	0.35	0.87	0.35	45.7
Appro	ach		24	0.0	24	0.0	0.029	9.2	LOS A	0.1	0.7	0.35	0.87	0.35	45.8
All Ve	hicles		408	0.0	408	0.0	0.102	1.6	NA	0.1	0.7	0.07	0.18	0.07	40.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:15:16 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

Site: 02 [[01] 03 pm nd (Site Folder: 2024 Before Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2024 Before Development Site Category: Base Year Stop (Two-Way)

Vehic	le M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem F [Total veh/h	nand Iows HV] %	Ar Fl [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% I Qu Veh. veh	Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	Glen	dore Roa	ad												
1	L2	All MCs	11	0.0	11	0.0	0.098	5.6	LOS A	0.0	0.0	0.00	0.03	0.00	57.2
2	T1	All MCs	183	0.0	183	0.0	0.098	0.0	LOS A	0.0	0.0	0.00	0.03	0.00	59.7
Appro	ach		194	0.0	194	0.0	0.098	0.3	NA	0.0	0.0	0.00	0.03	0.00	59.5
North:	Glen	dore Roa	d												
8	T1	All MCs	111	0.0	111	0.0	0.080	0.3	LOS A	0.2	1.5	0.16	0.19	0.16	58.3
9	R2	All MCs	28	0.0	28	0.0	0.080	6.3	LOS A	0.2	1.5	0.16	0.19	0.16	55.7
Appro	ach		139	0.0	139	0.0	0.080	1.5	NA	0.2	1.5	0.16	0.19	0.16	57.7
West:	Chop	in Road													
10	L2	All MCs	22	0.0	22	0.0	0.032	8.9	LOS A	0.1	0.8	0.33	0.86	0.33	50.6
12	R2	All MCs	5	0.0	5	0.0	0.032	11.1	LOS B	0.1	0.8	0.33	0.86	0.33	50.4
Appro	ach		27	0.0	27	0.0	0.032	9.3	LOS A	0.1	0.8	0.33	0.86	0.33	50.6
All Vel	nicles		360	0.0	360	0.0	0.098	1.5	NA	0.2	1.5	0.09	0.16	0.09	58.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:15:18 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

Site: 02 [[01] 03am nd (Site Folder: 2024 Before Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2024 Before Development Site Category: Base Year Stop (Two-Way)

Vehic	le M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	nand Iows HV] %	Ar F [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% E Qu [Veh. veh	Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	Glen	idore Roa	ad												
1	L2	All MCs	1	0.0	1	0.0	0.061	5.6	LOS A	0.0	0.0	0.00	0.01	0.00	57.4
2	T1	All MCs	120	0.0	120	0.0	0.061	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.9
Appro	ach		121	0.0	121	0.0	0.061	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.9
North:	Glen	dore Roa	d												
8	T1	All MCs	406	0.0	406	0.0	0.212	0.0	LOS A	0.1	0.6	0.02	0.02	0.02	59.8
9	R2	All MCs	9	0.0	9	0.0	0.212	5.6	LOS A	0.1	0.6	0.02	0.02	0.02	57.0
Appro	ach		416	0.0	416	0.0	0.212	0.1	NA	0.1	0.6	0.02	0.02	0.02	59.7
West:	Chop	in Road													
10	L2	All MCs	21	0.0	21	0.0	0.043	8.6	LOS A	0.2	1.1	0.35	0.84	0.35	49.8
12	R2	All MCs	8	0.0	8	0.0	0.043	15.3	LOS C	0.2	1.1	0.35	0.84	0.35	49.6
Appro	ach		29	0.0	29	0.0	0.043	10.5	LOS B	0.2	1.1	0.35	0.84	0.35	49.8
All Ve	hicles		566	0.0	566	0.0	0.212	0.7	NA	0.2	1.1	0.03	0.06	0.03	59.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:15:17 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

ANNEXURE D SIDRA OUTPUT SHEETS 2024 After Development

👼 Site: 03 [[02] 01 am ad (Site Folder: 2024 After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2024 After Development Site Category: Base Year Stop (Two-Way)

Vehic	le M	ovement	Perfo	rmar	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	nand lows HV] %	Ar Fl [Total] veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% E Qu [Veh. veh	Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Merl	e Road													
1	L2	All MCs	1	0.0	1	0.0	0.127	8.1	LOS A	0.6	3.9	0.20	0.94	0.20	51.2
2	T1	All MCs	92	0.0	92	0.0	0.127	8.1	LOS A	0.6	3.9	0.20	0.94	0.20	51.2
3	R2	All MCs	23	0.0	23	0.0	0.127	8.7	LOS A	0.6	3.9	0.20	0.94	0.20	51.0
Appro	ach		116	0.0	116	0.0	0.127	8.2	LOS A	0.6	3.9	0.20	0.94	0.20	51.1
East:	Blumb	erg Road													
4	L2	All MCs	8	0.0	8	0.0	0.019	5.6	LOS A	0.1	0.6	0.09	0.49	0.09	53.3
5	T1	All MCs	4	0.0	4	0.0	0.019	0.1	LOS A	0.1	0.6	0.09	0.49	0.09	55.4
6	R2	All MCs	18	0.0	18	0.0	0.019	5.5	LOS A	0.1	0.6	0.09	0.49	0.09	53.0
Appro	ach		31	0.0	31	0.0	0.019	4.8	NA	0.1	0.6	0.09	0.49	0.09	53.4
North:	Merle	e Road													
7	L2	All MCs	51	0.0	51	0.0	0.095	8.1	LOS A	0.4	2.7	0.11	0.95	0.11	51.1
8	T1	All MCs	33	0.0	33	0.0	0.095	8.1	LOS A	0.4	2.7	0.11	0.95	0.11	51.1
9	R2	All MCs	14	0.0	14	0.0	0.095	8.8	LOS A	0.4	2.7	0.11	0.95	0.11	50.9
Appro	ach		97	0.0	97	0.0	0.095	8.2	LOS A	0.4	2.7	0.11	0.95	0.11	51.1
West:	Blum	berg Road	t												
10	L2	All MCs	13	0.0	13	0.0	0.013	5.5	LOS A	0.0	0.0	0.00	0.57	0.00	53.1
11	T1	All MCs	12	0.0	12	0.0	0.013	4.9	LOS A	0.0	0.0	0.00	0.57	0.00	53.1
12	R2	All MCs	1	0.0	1	0.0	0.013	5.5	LOS A	0.0	0.0	0.00	0.57	0.00	52.8
Appro	ach		25	0.0	25	0.0	0.013	5.2	NA	0.0	0.0	0.00	0.57	0.00	53.1
All Ve	hicles		268	0.0	268	0.0	0.127	7.5	NA	0.6	3.9	0.14	0.86	0.14	51.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:01:35 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

👼 Site: 03 [[02] 01 pm ad (Site Folder: 2024 After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2024 After Development Site Category: Base Year Stop (Two-Way)

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total	nand Iows HV 1	Ar Fl [Total	rival lows HV 1	Deg. Satn	Aver. Delay	Level of Service	95% E Qu [Veh	Back Of leue Dist 1	Prop. Que	Eff. Stop Rate	Aver. No. of Cvcles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Merl	e Road													
1	L2	All MCs	1	0.0	1	0.0	0.056	8.1	LOS A	0.2	1.6	0.19	0.94	0.19	51.2
2	T1	All MCs	40	0.0	40	0.0	0.056	8.1	LOS A	0.2	1.6	0.19	0.94	0.19	51.2
3	R2	All MCs	9	0.0	9	0.0	0.056	8.8	LOS A	0.2	1.6	0.19	0.94	0.19	50.9
Appro	ach		51	0.0	51	0.0	0.056	8.2	LOS A	0.2	1.6	0.19	0.94	0.19	51.1
East:	Blumb	erg Road	I												
4	L2	All MCs	21	0.0	21	0.0	0.027	5.6	LOS A	0.1	0.7	0.07	0.50	0.07	53.2
5	T1	All MCs	5	0.0	5	0.0	0.027	0.0	LOS A	0.1	0.7	0.07	0.50	0.07	55.3
6	R2	All MCs	19	0.0	19	0.0	0.027	5.5	LOS A	0.1	0.7	0.07	0.50	0.07	52.9
Appro	ach		45	0.0	45	0.0	0.027	4.9	NA	0.1	0.7	0.07	0.50	0.07	53.3
North:	Merle	e Road													
7	L2	All MCs	16	0.0	16	0.0	0.124	8.1	LOS A	0.5	3.8	0.16	0.95	0.16	51.2
8	T1	All MCs	84	0.0	84	0.0	0.124	8.2	LOS A	0.5	3.8	0.16	0.95	0.16	51.2
9	R2	All MCs	18	0.0	18	0.0	0.124	8.2	LOS A	0.5	3.8	0.16	0.95	0.16	50.9
Appro	ach		118	0.0	118	0.0	0.124	8.2	LOS A	0.5	3.8	0.16	0.95	0.16	51.1
West:	Blum	berg Roa	d												
10	L2	All MCs	14	0.0	14	0.0	0.011	5.5	LOS A	0.0	0.0	0.00	0.57	0.00	53.0
11	T1	All MCs	6	0.0	6	0.0	0.011	4.9	LOS A	0.0	0.0	0.00	0.57	0.00	53.0
12	R2	All MCs	1	0.0	1	0.0	0.011	5.5	LOS A	0.0	0.0	0.00	0.57	0.00	52.8
Appro	ach		21	0.0	21	0.0	0.011	5.3	NA	0.0	0.0	0.00	0.57	0.00	53.0
All Ve	hicles		235	0.0	235	0.0	0.124	7.3	NA	0.5	3.8	0.14	0.83	0.14	51.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:01:36 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

Site: 01v [[02] 02 am ad (Site Folder: 2024 After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2024 After Development Site Category: Base Year Stop (Two-Way)

Vehic	le M	ovemen	t Perfo	rmai	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H. Tatal	lows	اح المنت آ	OWS	Satn	Delay	Service	Qu		Que	Stop	No. of	Speed
			veh/h	HV J %	veh/h	HV J %	v/c	sec		ven. veh	m Dist		Rale	Cycles	km/h
South	: Glen	dore Roa	ad												
1	L2	All MCs	20	0.0	20	0.0	0.105	3.8	LOS A	0.1	0.6	0.05	0.10	0.05	38.8
2	T1	All MCs	169	0.0	169	0.0	0.105	0.1	LOS A	0.1	0.6	0.05	0.10	0.05	39.7
3	R2	All MCs	7	0.0	7	0.0	0.105	4.7	LOS A	0.1	0.6	0.05	0.10	0.05	39.1
Appro	ach		197	0.0	197	0.0	0.105	0.6	NA	0.1	0.6	0.05	0.10	0.05	39.6
East:	Rossi	ni Road													
4	L2	All MCs	34	0.0	34	0.0	0.076	9.7	LOS A	0.3	2.1	0.50	0.89	0.50	49.8
5	T1	All MCs	3	0.0	3	0.0	0.076	11.8	LOS B	0.3	2.1	0.50	0.89	0.50	44.8
6	R2	All MCs	18	0.0	18	0.0	0.076	12.8	LOS B	0.3	2.1	0.50	0.89	0.50	49.6
Appro	ach		55	0.0	55	0.0	0.076	10.9	LOS B	0.3	2.1	0.50	0.89	0.50	49.5
North:	Glen	dore Roa	d												
7	L2	All MCs	4	0.0	4	0.0	0.180	4.0	LOS A	0.1	1.0	0.04	0.05	0.04	39.4
8	T1	All MCs	324	0.0	324	0.0	0.180	0.0	LOS A	0.1	1.0	0.04	0.05	0.04	39.8
9	R2	All MCs	17	0.0	17	0.0	0.180	4.2	LOS A	0.1	1.0	0.04	0.05	0.04	38.8
Appro	ach		345	0.0	345	0.0	0.180	0.3	NA	0.1	1.0	0.04	0.05	0.04	39.8
West:	Micha	aelangelo	Road												
10	L2	All MCs	38	0.0	38	0.0	0.153	8.7	LOS A	0.6	3.9	0.47	0.89	0.47	44.5
11	T1	All MCs	1	0.0	1	0.0	0.153	11.3	LOS B	0.6	3.9	0.47	0.89	0.47	44.5
12	R2	All MCs	62	0.0	62	0.0	0.153	12.4	LOS B	0.6	3.9	0.47	0.89	0.47	44.3
Appro	ach		101	0.0	101	0.0	0.153	11.0	LOS B	0.6	3.9	0.47	0.89	0.47	44.4
All Ve	hicles		698	0.0	698	0.0	0.180	2.8	NA	0.6	3.9	0.14	0.25	0.14	40.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:01:28 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

Site: 01v [[02] 02 pm ad (Site Folder: 2024 After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2024 After Development Site Category: Base Year Stop (Two-Way)

Vehic	cle Mo	ovement	Perfo	rmai	nce										
Mov ID	Turn	Mov Class	Dem Fl	nand Iows HV/ 1	Ar Fl [Total	rival ows HV 1	Deg. Satn	Aver. Delay	Level of Service	95% E Qu [Veh	Back Of eue Dist 1	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		nato	Cycles	km/h
South	: Glen	dore Roa	d												
1	L2	All MCs	21	0.0	21	0.0	0.116	3.5	LOS A	0.1	0.4	0.03	0.07	0.03	38.9
2	T1	All MCs	194	0.0	194	0.0	0.116	0.0	LOS A	0.1	0.4	0.03	0.07	0.03	39.8
3	R2	All MCs	5	0.0	5	0.0	0.116	4.0	LOS A	0.1	0.4	0.03	0.07	0.03	39.2
Appro	ach		220	0.0	220	0.0	0.116	0.5	NA	0.1	0.4	0.03	0.07	0.03	39.7
East:	Rossi	ni Road													
4	L2	All MCs	3	0.0	3	0.0	0.026	8.8	LOS A	0.1	0.7	0.47	0.87	0.47	49.8
5	T1	All MCs	1	0.0	1	0.0	0.026	10.6	LOS B	0.1	0.7	0.47	0.87	0.47	44.8
6	R2	All MCs	13	0.0	13	0.0	0.026	11.2	LOS B	0.1	0.7	0.47	0.87	0.47	49.6
Appro	ach		17	0.0	17	0.0	0.026	10.7	LOS B	0.1	0.7	0.47	0.87	0.47	49.4
North	Glen	dore Roa	d												
7	L2	All MCs	37	0.0	37	0.0	0.136	3.8	LOS A	0.3	1.9	0.12	0.18	0.12	39.0
8	T1	All MCs	186	0.0	186	0.0	0.136	0.1	LOS A	0.3	1.9	0.12	0.18	0.12	39.4
9	R2	All MCs	29	0.0	29	0.0	0.136	4.3	LOS A	0.3	1.9	0.12	0.18	0.12	38.1
Appro	ach		253	0.0	253	0.0	0.136	1.2	NA	0.3	1.9	0.12	0.18	0.12	39.2
West:	Micha	aelangelo	Road												
10	L2	All MCs	17	0.0	17	0.0	0.041	8.8	LOS A	0.1	1.0	0.38	0.87	0.38	45.7
11	T1	All MCs	3	0.0	3	0.0	0.041	10.3	LOS B	0.1	1.0	0.38	0.87	0.38	45.7
12	R2	All MCs	14	0.0	14	0.0	0.041	10.4	LOS B	0.1	1.0	0.38	0.87	0.38	45.4
Appro	ach		34	0.0	34	0.0	0.041	9.6	LOS A	0.1	1.0	0.38	0.87	0.38	45.6
All Ve	hicles		523	0.0	523	0.0	0.136	1.7	NA	0.3	1.9	0.11	0.20	0.11	40.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:01:29 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

👼 Site: 02 [[02] 03 am ad (Site Folder: 2024 After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2024 After Development Site Category: Base Year Stop (Two-Way)

Vehic	le Mo	ovemen	t Perfo	rma	nce	_									
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	nand lows HV] %	Ar Fl [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Qı [Veh. veh	Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	Glen	dore Roa	ad												
1	L2	All MCs	6	0.0	6	0.0	0.064	5.6	LOS A	0.0	0.0	0.00	0.03	0.00	57.2
2	T1	All MCs	120	0.0	120	0.0	0.064	0.0	LOS A	0.0	0.0	0.00	0.03	0.00	59.7
Appro	ach		126	0.0	126	0.0	0.064	0.3	NA	0.0	0.0	0.00	0.03	0.00	59.6
North:	Glen	dore Roa	d												
8	T1	All MCs	406	0.0	406	0.0	0.230	0.1	LOS A	0.3	1.9	0.05	0.06	0.05	59.4
9	R2	All MCs	32	0.0	32	0.0	0.230	6.1	LOS A	0.3	1.9	0.05	0.06	0.05	56.7
Appro	ach		438	0.0	438	0.0	0.230	0.5	NA	0.3	1.9	0.05	0.06	0.05	59.2
West:	Chop	in Road													
10	L2	All MCs	82	0.0	82	0.0	0.145	8.6	LOS A	0.6	3.9	0.36	0.86	0.36	49.8
12	R2	All MCs	23	0.0	23	0.0	0.145	17.1	LOS C	0.6	3.9	0.36	0.86	0.36	49.6
Appro	ach		105	0.0	105	0.0	0.145	10.5	LOS B	0.6	3.9	0.36	0.86	0.36	49.8
All Vel	nicles		669	0.0	669	0.0	0.230	2.0	NA	0.6	3.9	0.09	0.18	0.09	57.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:01:33 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

👼 Site: 02 [[02] 03 pm ad (Site Folder: 2024 After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2024 After Development Site Category: Base Year Stop (Two-Way)

Vehic	le Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem F [Total veh/h	nand Iows HV] %	Ar Fl [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Qı [Veh. veh	Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Glen	dore Roa	ad												
1	L2	All MCs	24	0.0	24	0.0	0.105	5.6	LOS A	0.0	0.0	0.00	0.07	0.00	56.9
2	T1	All MCs	183	0.0	183	0.0	0.105	0.0	LOS A	0.0	0.0	0.00	0.07	0.00	59.3
Appro	ach		207	0.0	207	0.0	0.105	0.7	NA	0.0	0.0	0.00	0.07	0.00	59.0
North:	Glen	dore Roa	d												
8	T1	All MCs	111	0.0	111	0.0	0.129	0.6	LOS A	0.6	4.0	0.29	0.36	0.29	56.7
9	R2	All MCs	85	0.0	85	0.0	0.129	6.4	LOS A	0.6	4.0	0.29	0.36	0.29	54.2
Appro	ach		196	0.0	196	0.0	0.129	3.1	NA	0.6	4.0	0.29	0.36	0.29	55.6
West:	Chop	in Road													
10	L2	All MCs	49	0.0	49	0.0	0.074	9.0	LOS A	0.3	1.9	0.36	0.87	0.36	50.4
12	R2	All MCs	12	0.0	12	0.0	0.074	12.3	LOS B	0.3	1.9	0.36	0.87	0.36	50.2
Appro	ach		61	0.0	61	0.0	0.074	9.6	LOS A	0.3	1.9	0.36	0.87	0.36	50.4
All Ve	hicles		464	0.0	464	0.0	0.129	2.9	NA	0.6	4.0	0.17	0.30	0.17	56.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:01:34 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

ANNEXURE E SIDRA OUTPUT SHEETS 2029 After Development

👼 Site: 03 [[03] 01 am ad (Site Folder: 2029 After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2029 After Development Site Category: Base Year Stop (Two-Way)

Vehic	le M	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
טו		Class	FI [Total]	IOWS	FI [Total]	IOWS H\/1	Sath	Delay	Service	Ql [\/eh	Jeue Dist 1	Que	Stop Rate	NO. OT Cycles	Speed
			veh/h	% %	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	: Merl	e Road													
1	L2	All MCs	1	0.0	1	0.0	0.128	8.1	LOS A	0.6	4.0	0.20	0.94	0.20	51.2
2	T1	All MCs	92	0.0	92	0.0	0.128	8.1	LOS A	0.6	4.0	0.20	0.94	0.20	51.2
3	R2	All MCs	23	0.0	23	0.0	0.128	8.8	LOS A	0.6	4.0	0.20	0.94	0.20	50.9
Appro	ach		116	0.0	116	0.0	0.128	8.3	LOS A	0.6	4.0	0.20	0.94	0.20	51.1
East:	Blumb	erg Road	I												
4	L2	All MCs	8	0.0	8	0.0	0.021	5.6	LOS A	0.1	0.6	0.09	0.49	0.09	53.2
5	T1	All MCs	4	0.0	4	0.0	0.021	0.1	LOS A	0.1	0.6	0.09	0.49	0.09	55.3
6	R2	All MCs	20	0.0	20	0.0	0.021	5.5	LOS A	0.1	0.6	0.09	0.49	0.09	53.0
Appro	ach		33	0.0	33	0.0	0.021	4.9	NA	0.1	0.6	0.09	0.49	0.09	53.3
North:	Merle	e Road													
7	L2	All MCs	56	0.0	56	0.0	0.101	8.1	LOS A	0.4	2.9	0.12	0.94	0.12	51.1
8	T1	All MCs	33	0.0	33	0.0	0.101	8.1	LOS A	0.4	2.9	0.12	0.94	0.12	51.1
9	R2	All MCs	15	0.0	15	0.0	0.101	8.8	LOS A	0.4	2.9	0.12	0.94	0.12	50.8
Appro	ach		103	0.0	103	0.0	0.101	8.2	LOS A	0.4	2.9	0.12	0.94	0.12	51.1
West:	Blum	berg Roa	d												
10	L2	All MCs	14	0.0	14	0.0	0.014	5.5	LOS A	0.0	0.0	0.00	0.57	0.00	53.1
11	T1	All MCs	12	0.0	12	0.0	0.014	4.9	LOS A	0.0	0.0	0.00	0.57	0.00	53.1
12	R2	All MCs	1	0.0	1	0.0	0.014	5.5	LOS A	0.0	0.0	0.00	0.57	0.00	52.8
Appro	ach		26	0.0	26	0.0	0.014	5.3	NA	0.0	0.0	0.00	0.57	0.00	53.1
All Ve	hicles		278	0.0	278	0.0	0.128	7.6	NA	0.6	4.0	0.14	0.86	0.14	51.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:24:09 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

👼 Site: 03 [[03] 01 pm ad (Site Folder: 2029 After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2029 After Development Site Category: Base Year Stop (Two-Way)

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total	nand lows HV]	Ar Fl [Total]	rival ows HV]	Deg. Satn	Aver. Delay	Level of Service	95% E Qu [Veh.	Back Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Merl	e Road													
1	L2	All MCs	1	0.0	1	0.0	0.056	8.1	LOS A	0.2	1.6	0.20	0.94	0.20	51.2
2	T1	All MCs	40	0.0	40	0.0	0.056	8.1	LOS A	0.2	1.6	0.20	0.94	0.20	51.2
3	R2	All MCs	9	0.0	9	0.0	0.056	8.9	LOS A	0.2	1.6	0.20	0.94	0.20	50.9
Appro	ach		51	0.0	51	0.0	0.056	8.3	LOS A	0.2	1.6	0.20	0.94	0.20	51.1
East:	Blumb	erg Road	I												
4	L2	All MCs	21	0.0	21	0.0	0.030	5.6	LOS A	0.1	0.8	0.07	0.49	0.07	53.2
5	T1	All MCs	6	0.0	6	0.0	0.030	0.1	LOS A	0.1	0.8	0.07	0.49	0.07	55.4
6	R2	All MCs	21	0.0	21	0.0	0.030	5.5	LOS A	0.1	0.8	0.07	0.49	0.07	53.0
Appro	ach		48	0.0	48	0.0	0.030	4.8	NA	0.1	0.8	0.07	0.49	0.07	53.4
North:	Merle	e Road													
7	L2	All MCs	18	0.0	18	0.0	0.129	8.1	LOS A	0.6	4.0	0.17	0.95	0.17	51.2
8	T1	All MCs	84	0.0	84	0.0	0.129	8.2	LOS A	0.6	4.0	0.17	0.95	0.17	51.2
9	R2	All MCs	20	0.0	20	0.0	0.129	8.3	LOS A	0.6	4.0	0.17	0.95	0.17	50.9
Appro	ach		122	0.0	122	0.0	0.129	8.2	LOS A	0.6	4.0	0.17	0.95	0.17	51.1
West:	Blum	berg Roa	d												
10	L2	All MCs	15	0.0	15	0.0	0.012	5.5	LOS A	0.0	0.0	0.00	0.57	0.00	53.0
11	T1	All MCs	7	0.0	7	0.0	0.012	4.9	LOS A	0.0	0.0	0.00	0.57	0.00	53.0
12	R2	All MCs	1	0.0	1	0.0	0.012	5.5	LOS A	0.0	0.0	0.00	0.57	0.00	52.8
Appro	ach		23	0.0	23	0.0	0.012	5.3	NA	0.0	0.0	0.00	0.57	0.00	53.0
All Ve	hicles		244	0.0	244	0.0	0.129	7.3	NA	0.6	4.0	0.14	0.82	0.14	51.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:24:10 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

Site: 01v [[03] 02 am ad (Site Folder: 2029 After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2029 After Development Site Category: Base Year Stop (Two-Way)

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% I	Back Of	Prop.	Eff.	Aver.	Aver.
טו		Class	FI [Total]	IOWS	FI [Total]	OWS H\/1	Sath	Delay	Service	Ql [\/eh	Jeue Dist 1	Que	Stop Rate	NO. OT Cycles	Speed
			veh/h	· · · ·] %	veh/h	%	v/c	sec		veh	m		TALE	Cycles	km/h
South	: Glen	dore Roa	d												
1	L2	All MCs	22	0.0	22	0.0	0.113	3.8	LOS A	0.1	0.7	0.06	0.10	0.06	38.7
2	T1	All MCs	181	0.0	181	0.0	0.113	0.1	LOS A	0.1	0.7	0.06	0.10	0.06	39.7
3	R2	All MCs	8	0.0	8	0.0	0.113	4.9	LOS A	0.1	0.7	0.06	0.10	0.06	39.1
Appro	ach		212	0.0	212	0.0	0.113	0.7	NA	0.1	0.7	0.06	0.10	0.06	39.6
East:	Rossi	ni Road													
4	L2	All MCs	37	0.0	37	0.0	0.089	10.0	LOS A	0.3	2.4	0.53	0.91	0.53	49.5
5	T1	All MCs	3	0.0	3	0.0	0.089	12.4	LOS B	0.3	2.4	0.53	0.91	0.53	44.4
6	R2	All MCs	20	0.0	20	0.0	0.089	13.6	LOS B	0.3	2.4	0.53	0.91	0.53	49.3
Appro	ach		60	0.0	60	0.0	0.089	11.3	LOS B	0.3	2.4	0.53	0.91	0.53	49.3
North:	Glen	dore Roa	d												
7	L2	All MCs	4	0.0	4	0.0	0.197	4.1	LOS A	0.2	1.1	0.04	0.05	0.04	39.4
8	T1	All MCs	356	0.0	356	0.0	0.197	0.1	LOS A	0.2	1.1	0.04	0.05	0.04	39.8
9	R2	All MCs	18	0.0	18	0.0	0.197	4.3	LOS A	0.2	1.1	0.04	0.05	0.04	38.8
Appro	ach		378	0.0	378	0.0	0.197	0.3	NA	0.2	1.1	0.04	0.05	0.04	39.8
West:	Micha	aelangelo	Road												
10	L2	All MCs	39	0.0	39	0.0	0.177	8.8	LOS A	0.6	4.5	0.51	0.90	0.51	44.1
11	T1	All MCs	1	0.0	1	0.0	0.177	11.9	LOS B	0.6	4.5	0.51	0.90	0.51	44.1
12	R2	All MCs	68	0.0	68	0.0	0.177	13.2	LOS B	0.6	4.5	0.51	0.90	0.51	43.8
Appro	ach		108	0.0	108	0.0	0.177	11.6	LOS B	0.6	4.5	0.51	0.90	0.51	43.9
All Ve	hicles		758	0.0	758	0.0	0.197	2.9	NA	0.6	4.5	0.15	0.26	0.15	40.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:24:11 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

Site: 01v [[03] 02 pm ad (Site Folder: 2029 After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2029 After Development Site Category: Base Year Stop (Two-Way)

Vehic	cle Mo	ovement	t Perfo	rmai	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
JD		Class	FI Total	IOWS	l Totol I	OWS	Sath	Delay	Service	QU I Vah		Que	Stop	NO. OT	Speed
			veh/h	⊓vj %	veh/h	⊓vj %	v/c	sec		veh	m		Nale	Cycles	km/h
South	: Glen	dore Roa	ıd												
1	L2	All MCs	23	0.0	23	0.0	0.127	3.6	LOS A	0.1	0.5	0.03	0.07	0.03	38.9
2	T1	All MCs	211	0.0	211	0.0	0.127	0.0	LOS A	0.1	0.5	0.03	0.07	0.03	39.8
3	R2	All MCs	6	0.0	6	0.0	0.127	4.2	LOS A	0.1	0.5	0.03	0.07	0.03	39.2
Appro	ach		240	0.0	240	0.0	0.127	0.5	NA	0.1	0.5	0.03	0.07	0.03	39.7
East:	Rossi	ni Road													
4	L2	All MCs	3	0.0	3	0.0	0.030	8.9	LOS A	0.1	0.7	0.49	0.88	0.49	49.6
5	T1	All MCs	1	0.0	1	0.0	0.030	11.0	LOS B	0.1	0.7	0.49	0.88	0.49	44.5
6	R2	All MCs	14	0.0	14	0.0	0.030	11.6	LOS B	0.1	0.7	0.49	0.88	0.49	49.4
Appro	ach		18	0.0	18	0.0	0.030	11.1	LOS B	0.1	0.7	0.49	0.88	0.49	49.2
North	Glen	dore Roa	d												
7	L2	All MCs	41	0.0	41	0.0	0.146	3.8	LOS A	0.3	2.0	0.12	0.18	0.12	39.0
8	T1	All MCs	200	0.0	200	0.0	0.146	0.2	LOS A	0.3	2.0	0.12	0.18	0.12	39.4
9	R2	All MCs	31	0.0	31	0.0	0.146	4.4	LOS A	0.3	2.0	0.12	0.18	0.12	38.1
Appro	ach		272	0.0	272	0.0	0.146	1.2	NA	0.3	2.0	0.12	0.18	0.12	39.2
West:	Micha	aelangelo	Road												
10	L2	All MCs	18	0.0	18	0.0	0.045	8.8	LOS A	0.2	1.1	0.40	0.87	0.40	45.6
11	T1	All MCs	3	0.0	3	0.0	0.045	10.6	LOS B	0.2	1.1	0.40	0.87	0.40	45.6
12	R2	All MCs	15	0.0	15	0.0	0.045	10.8	LOS B	0.2	1.1	0.40	0.87	0.40	45.3
Appro	ach		36	0.0	36	0.0	0.045	9.8	LOS A	0.2	1.1	0.40	0.87	0.40	45.5
All Ve	hicles		565	0.0	565	0.0	0.146	1.7	NA	0.3	2.0	0.11	0.20	0.11	39.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:24:12 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

👼 Site: 02 [[03] 03 am ad (Site Folder: 2029 After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2029 After Development Site Category: Base Year Stop (Two-Way)

Vehic	le Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem F [Total veh/h	nand lows HV] %	Ar Fl [Total] veh/h	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Qı [Veh. veh	Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Glen	dore Roa	ad												
1	L2	All MCs	6	0.0	6	0.0	0.070	5.6	LOS A	0.0	0.0	0.00	0.03	0.00	57.2
2	T1	All MCs	133	0.0	133	0.0	0.070	0.0	LOS A	0.0	0.0	0.00	0.03	0.00	59.7
Appro	ach		139	0.0	139	0.0	0.070	0.3	NA	0.0	0.0	0.00	0.03	0.00	59.6
North:	Glen	dore Roa	d												
8	T1	All MCs	448	0.0	448	0.0	0.252	0.1	LOS A	0.3	2.1	0.05	0.06	0.05	59.4
9	R2	All MCs	33	0.0	33	0.0	0.252	6.1	LOS A	0.3	2.1	0.05	0.06	0.05	56.7
Appro	ach		481	0.0	481	0.0	0.252	0.5	NA	0.3	2.1	0.05	0.06	0.05	59.2
West:	Chop	in Road													
10	L2	All MCs	84	0.0	84	0.0	0.160	8.7	LOS A	0.6	4.3	0.39	0.85	0.39	49.5
12	R2	All MCs	24	0.0	24	0.0	0.160	19.1	LOS C	0.6	4.3	0.39	0.85	0.39	49.3
Appro	ach		108	0.0	108	0.0	0.160	11.0	LOS B	0.6	4.3	0.39	0.85	0.39	49.5
All Ve	hicles		728	0.0	728	0.0	0.252	2.0	NA	0.6	4.3	0.09	0.17	0.09	57.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:24:16 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9

👼 Site: 02 [[03] 03 pm ad (Site Folder: 2029 After Development)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

TIA for Proposed Residential Development on Erf 325, Theescombe -2029 After Development Site Category: Base Year Stop (Two-Way)

Vehic	le Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem F [Total veh/h	nand Iows HV] %	Ar Fl [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Qı [Veh. veh	Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Glen	dore Roa	ad												
1	L2	All MCs	25	0.0	25	0.0	0.115	5.6	LOS A	0.0	0.0	0.00	0.07	0.00	56.9
2	T1	All MCs	202	0.0	202	0.0	0.115	0.0	LOS A	0.0	0.0	0.00	0.07	0.00	59.3
Appro	ach		227	0.0	227	0.0	0.115	0.6	NA	0.0	0.0	0.00	0.07	0.00	59.1
North:	Glen	dore Roa	d												
8	T1	All MCs	122	0.0	122	0.0	0.140	0.7	LOS A	0.6	4.3	0.30	0.36	0.30	56.7
9	R2	All MCs	88	0.0	88	0.0	0.140	6.5	LOS A	0.6	4.3	0.30	0.36	0.30	54.2
Appro	ach		211	0.0	211	0.0	0.140	3.1	NA	0.6	4.3	0.30	0.36	0.30	55.6
West:	Chop	in Road													
10	L2	All MCs	52	0.0	52	0.0	0.081	9.1	LOS A	0.3	2.1	0.38	0.88	0.38	50.3
12	R2	All MCs	13	0.0	13	0.0	0.081	12.9	LOS B	0.3	2.1	0.38	0.88	0.38	50.1
Appro	ach		64	0.0	64	0.0	0.081	9.9	LOS A	0.3	2.1	0.38	0.88	0.38	50.3
All Ve	hicles		502	0.0	502	0.0	0.140	2.9	NA	0.6	4.3	0.17	0.29	0.17	56.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Thursday, 19 September 2024 1:24:17 PM Project: F:\2200-2299\2219\Design\SIDRA\Project - 325_Theescombe.sip9